Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542455

RESUMO

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a growing health problem for which no therapy exists to date. The modulation of the gut microbiome may have treatment potential for MASLD. Here, we investigated Anaerobutyricum soehngenii, a butyrate-producing anaerobic bacterium with beneficial effects in metabolic syndrome, in a diet-induced MASLD mouse model. Male C57BL/6J mice received a Western-type high-fat diet and water with 15% fructose (WDF) to induce MASLD and were gavaged with A. soehngenii (108 or 109 colony-forming units (CFU) 3 times per week) or a placebo for 6 weeks. The A. soehngenii gavage increased the cecal butyrate concentrations. Although there was no effect on histological MASLD scores, A. soehngenii improved the glycemic response to insulin. In the liver, the WDF-associated altered expression of three genes relevant to the MASLD pathophysiology was reversed upon treatment with A. soehngenii: Lipin-1 (Lpin1), insulin-like growth factor binding protein 1 (Igfbp1) and Interleukin 1 Receptor Type 1 (Il1r1). A. soehngenii administration also increased the intestinal expression of gluconeogenesis and fructolysis genes. Although these effects did not translate into significant histological improvements in MASLD, these results provide a basis for combined gut microbial approaches to induce histological improvements in MASLD.


Assuntos
Clostridiales , Fígado Gorduroso , Doenças Metabólicas , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Composição de Bases , Gluconeogênese , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Butiratos , Expressão Gênica , Fosfatidato Fosfatase
2.
iScience ; 27(3): 109208, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38420581

RESUMO

Consumption of fructo- (FOS) and galacto-oligosaccharides (GOS) has health benefits which have been linked in part to short-chain fatty acids (SCFA) production by the gut microbiota. However, detailed knowledge of this process in the human intestine is lacking. We aimed to determine the acute fermentation kinetics of a FOS:GOS mixture in healthy males using a naso-intestinal catheter for sampling directly in the ileum or colon. We studied the fate of SCFA as substrates for glucose and lipid metabolism by the host after infusion of 13C-SCFA. In the human distal ileum, no fermentation of FOS:GOS, nor SCFA production, or bacterial cross-feeding was observed. The relative composition of intestinal microbiota changed rapidly during the test day, which demonstrates the relevance of postprandial intestinal sampling to track acute responses of the microbial community toward interventions. SCFA were vividly taken up and metabolized by the host as shown by incorporation of 13C in various host metabolites.

3.
Cell Metab ; 35(12): 2099-2100, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056427

RESUMO

Early-life microbiota have a crucial role in healthy development. Antibiotics, on the other hand, can disrupt this beneficial interaction and have been linked to increased adiposity in children. Shelton and collaborators went deeper into the mechanism by which microbiota protect against lipid metabolic dysfunction and diet-induced obesity. The results highlight the long-term metabolic risk of early antibiotic exposure.


Assuntos
Microbioma Gastrointestinal , Microbiota , Criança , Lactente , Humanos , Obesidade/metabolismo , Antibacterianos/farmacologia , Adiposidade
4.
Nat Med ; 28(10): 2100-2106, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36216942

RESUMO

To test the hypothesis that the gut microbiota of individuals with nonalcoholic fatty liver disease (NAFLD) produce enough ethanol to be a driving force in the development and progression of this complex disease, we performed one prospective clinical study and one intervention study. Ethanol was measured while fasting and 120 min after a mixed meal test (MMT) in 146 individuals. In a subset of 37 individuals and in an external validation cohort, ethanol was measured in portal vein blood. In an intervention study, ten individuals with NAFLD and ten overweight but otherwise healthy controls were infused with a selective alcohol dehydrogenase (ADH) inhibitor before an MMT. When compared to fasted peripheral blood, median portal vein ethanol concentrations were 187 (interquartile range (IQR), 17-516) times higher and increased with disease progression from 2.1 mM in individuals without steatosis to 8.0 mM in NAFL 21.0 mM in nonalcoholic steatohepatitis. Inhibition of ADH induced a 15-fold (IQR,1.6- to 20-fold) increase in peripheral blood ethanol concentrations in individuals with NAFLD, although this effect was abolished after antibiotic treatment. Specifically, Lactobacillaceae correlated with postprandial peripheral ethanol concentrations (Spearman's rho, 0.42; P < 10-5) in the prospective study. Our data show that the first-pass effect obscures the levels of endogenous ethanol production, suggesting that microbial ethanol could be considered in the pathogenesis of this highly prevalent liver disease.


Assuntos
Microbiota , Hepatopatia Gordurosa não Alcoólica , Álcool Desidrogenase , Antibacterianos , Etanol , Humanos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Estudos Prospectivos
5.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166476, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35811030

RESUMO

Skeletal muscle insulin resistance is a key pathophysiological process that precedes the development of type 2 diabetes. Whereas an overload of long-chain fatty acids can induce muscle insulin resistance, butyrate, a short-chain fatty acid (SCFA) produced from dietary fibre fermentation, prevents it. This preventive role of butyrate has been attributed to histone deacetylase (HDAC)-mediated transcription regulation and activation of mitochondrial fatty-acid oxidation. Here we address the interplay between butyrate and the long-chain fatty acid palmitate and investigate how transcription, signalling and metabolism are integrated to result in the butyrate-induced skeletal muscle metabolism remodelling. Butyrate enhanced insulin sensitivity in palmitate-treated, insulin-resistant C2C12 cells, as shown by elevated insulin receptor 1 (IRS1) and pAKT protein levels and Slc2a4 (GLUT4) mRNA, which led to a higher glycolytic capacity. Long-chain fatty-acid oxidation capacity and other functional respiration parameters were not affected. Butyrate did upregulate mitochondrial proteins involved in its own oxidation, as well as concentrations of butyrylcarnitine and hydroyxybutyrylcarnitine. By knocking down the gene encoding medium-chain 3-ketoacyl-CoA thiolase (MCKAT, Acaa2), butyrate oxidation was inhibited, which amplified the effects of the SCFA on insulin sensitivity and glycolysis. This response was associated with enhanced HDAC inhibition, based on histone 3 acetylation levels. Butyrate enhances insulin sensitivity and induces glycolysis, without the requirement of upregulated long-chain fatty acid oxidation. Butyrate catabolism functions as an escape valve that attenuates HDAC inhibition. Thus, inhibition of butyrate oxidation indirectly prevents insulin resistance and stimulates glycolytic flux in myotubes treated with butyrate, most likely via an HDAC-dependent mechanism.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Butiratos/metabolismo , Butiratos/farmacologia , Coenzima A , Diabetes Mellitus Tipo 2/metabolismo , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Ácidos Graxos/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Resistência à Insulina/fisiologia , Insulinas/metabolismo , Insulinas/farmacologia , Proteínas Mitocondriais/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Palmitatos/farmacologia , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo
6.
Nutrients ; 13(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959755

RESUMO

Metabolic-associated fatty liver disease (MAFLD) starts with hepatic triglyceride accumulation (steatosis) and can progress to more severe stages such as non-alcoholic steatohepatitis (NASH) and even cirrhosis. Butyrate, and butyrate-producing bacteria, have been suggested to reduce liver steatosis directly and systemically by increasing liver ß-oxidation. This study aimed to examine the influence of butyrate directly on the liver in an ex vivo induced MAFLD model. To maintain essential intercellular interactions, precision-cut liver slices (PCLSs) were used. These PCLSs were prepared from male C57BL/6J mice and cultured in varying concentrations of fructose, insulin, palmitic acid and oleic acid, to mimic metabolic syndrome. Dose-dependent triglyceride accumulation was measured after 24 and 48 h of incubation with the different medium compositions. PCLSs viability, as indicated by ATP content, was not affected by medium composition or the butyrate concentration used. Under induced steatotic conditions, butyrate did not prevent triglyceride accumulation. Moreover, it lowered the expression of genes encoding for fatty acid oxidation and only increased C4 related carnitines, which indicate butyrate oxidation. Nevertheless, butyrate lowered the fibrotic response of PCLSs, as shown by reduced gene expression of fibronectin, alpha-smooth muscle actin and osteopontin, and protein levels of type I collagen. These results suggest that in the liver, butyrate alone does not increase lipid ß-oxidation directly but might aid in the prevention of MAFLD progression to NASH and cirrhosis.


Assuntos
Butiratos/farmacologia , Fígado Gorduroso/tratamento farmacológico , Fígado/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/complicações , Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/prevenção & controle , Masculino , Síndrome Metabólica/complicações , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Oxirredução/efeitos dos fármacos , Triglicerídeos/metabolismo
7.
PLoS Comput Biol ; 17(8): e1009259, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383741

RESUMO

In this study we demonstrated through analytic considerations and numerical studies that the mitochondrial fatty-acid ß-oxidation can exhibit bistable-hysteresis behavior. In an experimentally validated computational model we identified a specific region in the parameter space in which two distinct stable and one unstable steady state could be attained with different fluxes. The two stable states were referred to as low-flux (disease) and high-flux (healthy) state. By a modular kinetic approach we traced the origin and causes of the bistability back to the distributive kinetics and the conservation of CoA, in particular in the last rounds of the ß-oxidation. We then extended the model to investigate various interventions that may confer health benefits by activating the pathway, including (i) activation of the last enzyme MCKAT via its endogenous regulator p46-SHC protein, (ii) addition of a thioesterase (an acyl-CoA hydrolysing enzyme) as a safety valve, and (iii) concomitant activation of a number of upstream and downstream enzymes by short-chain fatty-acids (SCFA), metabolites that are produced from nutritional fibers in the gut. A high concentration of SCFAs, thioesterase activity, and inhibition of the p46Shc protein led to a disappearance of the bistability, leaving only the high-flux state. A better understanding of the switch behavior of the mitochondrial fatty-acid oxidation process between a low- and a high-flux state may lead to dietary and pharmacological intervention in the treatment or prevention of obesity and or non-alcoholic fatty-liver disease.


Assuntos
Ácidos Graxos/metabolismo , Modelos Biológicos , Acetil-CoA C-Aciltransferase/antagonistas & inibidores , Acetil-CoA C-Aciltransferase/metabolismo , Animais , Biologia Computacional , Simulação por Computador , Estabilidade Enzimática , Ácidos Graxos/química , Humanos , Cinética , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/etiologia , Obesidade/metabolismo
8.
Am J Clin Nutr ; 114(3): 843-861, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34036315

RESUMO

Intestinal catheters have been used for decades in human nutrition, physiology, pharmacokinetics, and gut microbiome research, facilitating the delivery of compounds directly into the intestinal lumen or the aspiration of intestinal fluids in human subjects. Such research provides insights about (local) dynamic metabolic and other intestinal luminal processes, but working with catheters might pose challenges to biomedical researchers and clinicians. Here, we provide an overview of practical and technical aspects of applying naso- and oro-intestinal catheters for delivery of compounds and sampling luminal fluids from the jejunum, ileum, and colon in vivo. The recent literature was extensively reviewed, and combined with experiences and insights we gained through our own clinical trials. We included 60 studies that involved a total of 720 healthy subjects and 42 patients. Most of the studies investigated multiple intestinal regions (24 studies), followed by studies investigating only the jejunum (21 studies), ileum (13 studies), or colon (2 studies). The ileum and colon used to be relatively inaccessible regions in vivo. Custom-made state-of-the-art catheters are available with numerous options for the design, such as multiple lumina, side holes, and inflatable balloons for catheter progression or isolation of intestinal segments. These allow for multiple controlled sampling and compound delivery options in different intestinal regions. Intestinal catheters were often used for delivery (23 studies), sampling (10 studies), or both (27 studies). Sampling speed decreased with increasing distance from the sampling syringe to the specific intestinal segment (i.e., speed highest in duodenum, lowest in ileum/colon). No serious adverse events were reported in the literature, and a dropout rate of around 10% was found for these types of studies. This review is highly relevant for researchers who are active in various research areas and want to expand their research with the use of intestinal catheters in humans in vivo.


Assuntos
Cateterismo/métodos , Intestinos/fisiologia , Projetos de Pesquisa , Cateterismo/instrumentação , Humanos
9.
Sci Rep ; 11(1): 8133, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854074

RESUMO

Detailed knowledge on the fate of dietary components inside the human intestinal tract is lacking. Access to this inner world of digestion is now possible through novel human gastrointestinal sampling capsules. Due to the novelty of such devices, no methodology has been published to stabilise and analyse the resulting samples. A complicating factor is that excretion of such capsules in faeces may take days, while degradation of the dietary components continues. Therefore a stabilising reagent should be pre-loaded in the capsule to ensure the measurement of a representative sample. Considering the small volume of recovered samples, analytical methods must be optimized to collect as many data as possible from little material. We present a complete workflow for stabilising and analysing the fermentation status of dietary fibres in such samples, including microbiota, fibre degradation, and short chain fatty acids. The final quenching reagent was designed based on safety and effectiveness to inhibit fructo- and galacto-oligosaccharides degradation and short chain fatty acids production by human ileostomy microbiota, and subsequently validated in faecal samples. The final composition of the stock quenching reagent is 175 mM Tris, 525 mM NaCl, 35 mM EDTA, 12% SDS, and 8 M urea at pH 8.5.


Assuntos
Bactérias/classificação , Fibras na Dieta/análise , Fezes/química , Intestino Delgado/química , RNA Ribossômico 16S/genética , Manejo de Espécimes/instrumentação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos Voláteis/análise , Fezes/microbiologia , Feminino , Fermentação , Microbioma Gastrointestinal , Humanos , Ileostomia , Masculino , Fluxo de Trabalho
10.
Circ Res ; 124(1): 94-100, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30582442

RESUMO

RATIONALE: Several studies have suggested a role for the gut microbiota in inflammation and atherogenesis. A causal relation relationship between gut microbiota, inflammation, and atherosclerosis has not been explored previously. OBJECTIVE: Here, we investigated whether a proinflammatory microbiota from Caspase1-/- ( Casp1-/-) mice accelerates atherogenesis in Ldlr-/- mice. METHOD AND RESULTS: We treated female Ldlr-/- mice with antibiotics and subsequently transplanted them with fecal microbiota from Casp1-/- mice based on a cohousing approach. Autologous transplantation of fecal microbiota of Ldlr-/- mice served as control. Mice were cohoused for 8 or 13 weeks and fed chow or high-fat cholesterol-rich diet. Fecal samples were collected, and factors related to inflammation, metabolism, intestinal health, and atherosclerotic phenotypes were measured. Unweighted Unifrac distances of 16S rDNA (ribosomal DNA) sequences confirmed the introduction of the Casp1-/- and Ldlr-/- microbiota into Ldlr-/- mice (referred to as Ldlr-/-( Casp1-/-) or Ldlr-/-( Ldlr-/-) mice). Analysis of atherosclerotic lesion size in the aortic root demonstrated a significant 29% increase in plaque size in 13-week high-fat cholesterol-fed Ldlr-/-( Casp1-/-) mice compared with Ldlr-/-( Ldlr-/-) mice. We found increased numbers of circulating monocytes and neutrophils and elevated proinflammatory cytokine levels in plasma in high-fat cholesterol-fed Ldlr-/-( Casp1-/-) compared with Ldlr-/-( Ldlr-/-) mice. Neutrophil accumulation in the aortic root of Ldlr-/-( Casp1-/-) mice was enhanced compared with Ldlr-/-( Ldlr-/-) mice. 16S-rDNA-encoding sequence analysis in feces identified a significant reduction in the short-chain fatty acid-producing taxonomies Akkermansia, Christensenellaceae, Clostridium, and Odoribacter in Ldlr-/-( Casp1-/-) mice. Consistent with these findings, cumulative concentrations of the anti-inflammatory short-chain fatty acids propionate, acetate and butyrate in the cecum were significantly reduced in 13-week high-fat cholesterol-fed Ldlr-/-( Casp1-/-) compared with Ldlr-/-( Ldlr-/-) mice. CONCLUSIONS: Introduction of the proinflammatory Casp1-/- microbiota into Ldlr-/- mice enhances systemic inflammation and accelerates atherogenesis.


Assuntos
Aorta/metabolismo , Doenças da Aorta/microbiologia , Aterosclerose/microbiologia , Bactérias/metabolismo , Citocinas/metabolismo , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Mediadores da Inflamação/metabolismo , Inflamação/microbiologia , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Caspase 1/genética , Caspase 1/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Disbiose , Ácidos Graxos/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...